

74F175 Quad D Flip-Flop

General Description

The 'F175 is a high-speed quad D flip-flop. The device is useful for general flip-flop requirements where clock and clear inputs are common. The information on the D inputs is stored during the LOW-to-HIGH clock transition. Both true and complemented outputs of each flip-flop are provided. A Master Reset input resets all flip-flops, independent of the Clock or D inputs, LOW.

Features

- Edge-triggered D-type inputs
- Buffered positive edge-triggered clock
- Asynchronous common reset
- True and complement output
- Guaranteed 4000V minimum ESD protection

Ordering Code:

Commercial	Military	Package	Package Description
		Number	
74F175PC		N16E	16-Lead (0.300" Wide) Molded Dual-In-Line
	54F175DM (Note 2)	J16A	16-Lead Ceramic Dual-In-Line
74F175SC (Note 1)		M16A	16-Lead (0.150" Wide) Molded Small Outline, JEDEC
74F175SJ (Note 1)		M16D	16-Lead (0.300" Wide) Molded Small Outline, EIAJ
	54F175FM (Note 2)	W16A	16-Lead Cerpack
	54F175LM (Note 2)	E20A	20-Lead Ceramic Leadless Chip Carrier, Type C

Note 1: Devices also available in 13" reel. Use suffix = SCX and SJX.

Note 2: Military grade device with environmental and burn-in processing. Use suffix = DMQB, FMQB and LMQB.

Logic Symbols

Connection Diagrams IEEE/IEC Pin Assignment for

Unit Loading/Fan Out

		54F/74F				
Pin Names	Description	U.L.	Input I _{IH} /I _{IL}			
		HIGH/LOW	Output I _{OH} /I _{OL}			
D ₀ -D ₃	Data Inputs	1.0/1.0	20 μA/-0.6 mA			
CP	Clock Pulse Input (Active Rising Edge)	1.0/1.0	20 μA/–0.6 mA			
MR	Master Reset Input (Active LOW)	1.0/1.0	20 μA/–0.6 mA			
Q_0-Q_3	True Outputs	50/33.3	–1 mA/20 mA			
$\overline{Q}_0 - \overline{Q}_3$	Complement Outputs	50/33.3	–1 mA/20 mA			

Functional Description

The 'F175 consists of four edge-triggered D flip-flops with individual D inputs and Q and $\overline{\rm Q}$ outputs. The Clock and Master Reset are common. The four flip-flops will store the state of their individual D inputs on the LOW-to-HIGH clock (CP) transition, causing individual Q and $\overline{\rm Q}$ outputs to follow. A LOW input on the Master Reset (MR) will force all Q outputs LOW and Q outputs HIGH independent of Clock or Data inputs. The 'F175 is useful for general logic applications where a common Master Reset and Clock are acceptable.

Truth Table

	Inputs		Out	puts
MR	CP	D _n	Q _n	$\overline{\mathbf{Q}}_{\mathbf{n}}$
L	Х	Х	L	Н
Н	~	Н	Н	L
Н	~	L	L	Н

H = HIGH Voltage Level L = LOW Voltage Level

X = Immaterial

✓ = LOW-to-HIGH Clock Transition

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings (Note 3)

 $V_{\mbox{\scriptsize CC}}$ Pin Potential to

Ground Pin -0.5V to +7.0V Input Voltage (Note 4) -0.5V to +7.0V Input Current (Note 4) -30 mA to +5.0 mA

Voltage Applied to Output

in HIGH State (with $V_{CC} = 0V$)

Current Applied to Output

in LOW State (Max)

twice the rated I_{OL} (mA)

Recommended Operating Conditions

Free Air Ambient Temperature

 $\begin{array}{ll} \mbox{Military} & -55\mbox{°C to } +125\mbox{°C} \\ \mbox{Commercial} & 0\mbox{°C to } +70\mbox{°C} \\ \end{array}$

Supply Voltage

Military +4.5V to +5.5V Commercial +4.5V to +5.5V

Note 3: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 4: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics

Symbol	Parameter			54F/74F		Units	V _{cc}	Conditions
			Min	Тур	Max			
V _{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
V _{IL}	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
V _{CD}	Input Clamp Diode Volt	age			-1.2	V	Min	I _{IN} = -18 mA
V _{OH}	Output HIGH	54F 10% V _{CC}	2.5					I _{OH} = -1 mA
	Voltage	74F 10% V _{CC}	2.5			V	Min	I _{OH} = -1 mA
		74F 5% $V_{\rm CC}$	2.7					I _{OH} = -1 mA
V _{OL}	Output LOW	54F 10% V _{CC}			0.5	V	Min	I _{OL} = 20 mA
	Voltage	74F 10% $V_{\rm CC}$			0.5			I _{OL} = 20 mA
I _{IH}	Input HIGH	54F			20.0	μΑ	Max	V _{IN} = 2.7V
	Current	74F			5.0			
I _{BVI}	Input HIGH Current	54F			100	μΑ	Max	V _{IN} = 7.0V
	Breakdown Test	74F			7.0			
I _{CEX}	Output HIGH	54F			250	μA	Max	V _{OUT} = V _{CC}
	Leakage Current	74F			50			
V _{ID}	Input Leakage	74F	4.75			V	0.0	I _{ID} = 1.9 μA
	Test							All Other Pins Grounded
I _{OD}	Output Leakage	74F			3.75	μA	0.0	V _{IOD} = 150 mV
	Circuit Current							All Other Pins Grounded
I _{IL}	Input LOW Current				-0.6	mA	Max	V _{IN} = 0.5V
I _{os}	Output Short-Circuit Current		-60		-150	mA	Max	V _{OUT} = 0V
I _{CC}	Power Supply Current			22.5	34.0	mA	Max	CP = -
								$D_n = \overline{MR} = HIGH$

AC Electrical Characteristics

			74F T _A = +25°C			54F T _A , V _{CC} = Mil		74F T _A , V _{CC} = Com	
Symbol	Parameter	V _{CC} = +5.0V			C _L = 50 pF		C _L = 50 pF		Units
			C _L = 50 pF						
		Min	Тур	Max	Min	Max	Min	Max	
f _{max}	Maximum Clock	100	140		80		100		MHz
	Frequency								

AC Electrical Characteristics (Continued)

		74F T _A = +25°C V _{CC} = +5.0V			54F		74F		
Symbol	Parameter					_c = Mil 50 pF	T _A , V _{CC} = Com C _L = 50 pF		Units
		Min	C _L = 50 pF Typ	Max	Min	Max	Min	Max	
l 	5 " 5 !								
t _{PLH}	Propagation Delay	4.0	5.0	6.5	3.5	8.5	4.0	7.5	ns
t _{PHL}	CP to Q_n or \overline{Q}_n	4.0	6.5	8.5	4.0	10.5	4.0	9.5	113
t _{PHL}	Propagation Delay	4.5	9.0	11.5	4.5	15.0	4.5	13.0	ns
	MR to Q _n								
t _{PLH}	Propagation Delay	4.0	6.5	8.0	4.0	10.0	4.0	9.0	ns
	\overline{MR} to \overline{Q}_n								

AC Operating Requirements

		74F		54F		74F		
Symbol	mbol Parameter		T _A = +25°C		T _A , V _{CC} = Mil		T _A , V _{CC} = Com	
		V _{CC} = +5.0V						
		Min	Max	Min	Max	Min	Max	1
t _s (H)	Setup Time, HIGH or LOW	3.0		3.0		3.0		
t _s (L)	D _n to CP	3.0		3.0		3.0		ns
t _h (H)	Hold Time, HIGH or LOW	1.0		1.0		1.0		
$t_h(L)$	D _n to CP	1.0		2.0		1.0		
t _w (H)	CP Pulse Width	4.0		4.0		4.0		ns
$t_w(L)$	HIGH or LOW	5.0		5.0		5.0		
t _w (L)	MR Pulse Width, LOW	5.0		5.0		5.0		ns
t _{rec}	Recovery Time, MR to CP	5.0		5.0		5.0		ns

Ordering Information

The device number is used to form part of a simplified purchasing code where the package type and temperature range are defined as follows:

Physical Dimensions inches (millimeters) unless otherwise noted

20-Terminal Ceramic Leadless Chip Carrier (L) Package Number E20A E20A (REV D)

DS009490-6

16-Lead Ceramic Dual-In-Line Package (D) Package Number J16A

16-Lead (0.150" Wide) Molded Small Outline Package, JEDEC (S)
Package Number M16A

16-Lead (0.300" Wide) Molded Small Outline Package, EIAJ (SJ)
Package Number M16D

16-Lead (0.300" Wide) Molded Dual-In-Line Package (P) Package Number N16E

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DE-VICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMI-CONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor Corporation Americas Customer Response Center

Tel: 1-888-522-5372

Fairchild Semiconductor Europe

Fax: +49 (0) 1 80-530 85 86 Email: europe.support@nsc.com
Deutsch Tel: +49 (0) 8 141-35-0
English Tel: +44 (0) 1 793-85-68-56
Italy Tel: +39 (0) 2 57 5631

Fairchild Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon

Hong Kong Tel: +852 2737-7200 Fax: +852 2314-0061 National Semiconductor Japan Ltd. Tel: 81-3-5620-6175 Fax: 81-3-5620-6179

www.fairchildsemi.com