FAIRCHILD

SEMICロNロபСTロR ${ }_{\text {TM }}$

74F175

Quad D Flip－Flop

General Description

The＇F175 is a high－speed quad D flip－flop．The device is useful for general flip－flop requirements where clock and clear inputs are common．The information on the D inputs is stored during the LOW－to－HIGH clock transition．Both true and complemented outputs of each flip－flop are provided．A Master Reset input resets all flip－flops，independent of the Clock or D inputs，LOW

Ordering Code：

Commercial	Military	Package Number	Package Description
74F175PC		N16E	16－Lead（0．300＂Wide）Molded Dual－In－Line
	54F175DM（Note 2）	J16A	16－Lead Ceramic Dual－In－Line
74F175SC（Note 1）		M16A	16－Lead（0．150＂Wide）Molded Small Outline，JEDEC
74F175SJ（Note 1）		M16D	16－Lead（0．300＂Wide）Molded Small Outline，EIAJ
	54F175FM（Note 2）	W16A	16－Lead Cerpack
	54F175LM（Note 2）	E20A	20－Lead Ceramic Leadless Chip Carrier，Type C

Note 1：Devices also available in $13^{\prime \prime}$ reel．Use suffix＝SCX and SJX．
Note 2：Military grade device with environmental and burn－in processing．Use suffix＝DMQB，FMQB and LMQB．

Logic Symbols

Connection Diagrams
Pin Assignment for DIP，SOIC and Flatpak

Unit Loading/Fan Out

Pin Names	Description	$54 \mathrm{~F} / 74 \mathrm{~F}$	
		U.L. HIGH/LOW	Input $\mathbf{I}_{\mathbf{I H}} / \mathbf{I}_{\mathbf{I L}}$ Output $\mathbf{I}_{\mathbf{O H}} / \mathbf{I}_{\mathbf{O L}}$
$\mathrm{D}_{0}-\mathrm{D}_{3}$	Data Inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
CP	Clock Pulse Input (Active Rising Edge)	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{\mathrm{MR}}$	Master Reset Input (Active LOW)	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\mathrm{Q}_{0}-\mathrm{Q}_{3}$	True Outputs	$50 / 33.3$	$-1 \mathrm{~mA} / 20 \mathrm{~mA}$
$\bar{Q}_{0}-\bar{Q}_{3}$	Complement Outputs	$50 / 33.3$	$-1 \mathrm{~mA} / 20 \mathrm{~mA}$

Functional Description

The 'F175 consists of four edge-triggered D flip-flops with individual D inputs and Q and Q outputs. The Clock and Master Reset are common. The four flip-flops will store the state of their individual D inputs on the LOW-to-HIGH clock (CP) transition, causing individual Q and $\overline{\mathrm{Q}}$ outputs to follow. A LOW input on the Master Reset ($\overline{\mathrm{MR}}$) will force all Q outputs LOW and \bar{Q} outputs HIGH independent of Clock or Data inputs. The 'F175 is useful for general logic applications where a common Master Reset and Clock are acceptable.

Truth Table

Inputs			Outputs	
$\overline{\mathbf{M R}}$	$\mathbf{C P}$	$\mathbf{D}_{\mathbf{n}}$	$\mathbf{Q}_{\boldsymbol{n}}$	$\overline{\mathbf{Q}}_{\boldsymbol{n}}$
L	X	X	L	H
H	-	H	H	L
H	-	L	L	H

H = HIGH Voltage Level
L = LOW Voltage Level
$\mathrm{X}=$ Immaterial
$\jmath=$ LOW-to-HIGH Clock Transition

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings (Note 3)		in LOW State (Max)	twice the rated $\mathrm{l}_{\mathrm{OL}}(\mathrm{mA})$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	Recommended Operating	
Ambient Temperature under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Conditions	
Junction Temperature under Bias	$-55^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$		
Plastic	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	Free Air Ambient Temp	
$V_{C C}$ Pin Potential to		Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Ground Pin	-0.5 V to +7.0 V	Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Input Voltage (Note 4)	-0.5 V to +7.0 V	Supply Voltage	
Input Current (Note 4)	-30 mA to +5.0 mA	Military	+4.5 V to +5.5 V
Voltage Applied to Output		Commercial	+4.5 V to +5.5 V
in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$)		Note 3: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.	
Standard Output	-0.5 V to V_{Cc}		
3-STATE Output	-0.5 V to +5.5 V	Note 4: Either voltage limit o	sufficient to protect inputs.

DC Electrical Characteristics

Symbol	Parameter	54F/74F			Units	V_{cc}	Conditions
		Min	Typ	Max			
V_{IH}	Input HIGH Voltage	2.0			V		Recognized as a HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			0.8	V		Recognized as a LOW Signal
V_{CD}	Input Clamp Diode Voltage			-1.2	V	Min	$\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH $54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}}$ Voltage $74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}}$ $74 \mathrm{~F} 5 \% \mathrm{~V}_{\mathrm{Cc}}$	$\begin{aligned} & 2.5 \\ & 2.5 \\ & 2.7 \\ & \hline \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \end{aligned}$
V_{OL}	Output LOW $54 \mathrm{~F} \mathrm{10} \mathrm{\%} \mathrm{~V} \mathrm{VC}$ Voltage $74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}}$			$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA} \end{aligned}$
I_{IH}	Input HIGH 54 F Current 74 F			$\begin{gathered} 20.0 \\ 5.0 \end{gathered}$	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current 54 F Breakdown Test 74 F			$\begin{aligned} & \hline 100 \\ & 7.0 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$
$\mathrm{I}_{\text {CEX }}$	Output HIGH 54 F Leakage Current 74 F			$\begin{gathered} 250 \\ 50 \end{gathered}$	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$
$\mathrm{V}_{\text {ID }}$	Input Leakage 74F Test	4.75			V	0.0	$\mathrm{I}_{\mathrm{ID}}=1.9 \mu \mathrm{~A}$ All Other Pins Grounded
I_{OD}	Output Leakage 74F Circuit Current			3.75	$\mu \mathrm{A}$	0.0	$\mathrm{V}_{\mathrm{IOD}}=150 \mathrm{mV}$ All Other Pins Grounded
${ }_{\text {IL }}$	Input LOW Current			-0.6	mA	Max	$\mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$
I_{OS}	Output Short-Circuit Current	-60		-150	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
I_{CC}	Power Supply Current		22.5	34.0	mA	Max	$\begin{aligned} & \mathrm{CP}=\digamma \\ & \mathrm{D}_{\mathrm{n}}=\overline{\mathrm{MR}}=\mathrm{HIGH} \end{aligned}$

AC Electrical Characteristics

Symbol	Parameter	74F			54F		74F		Units
		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \hline \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Mil} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Com} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		
		Min	Typ	Max	Min	Max	Min	Max	
$\mathrm{f}_{\text {max }}$	Maximum Clock Frequency	100	140		80		100		MHz

AC Electrical Characteristics (Continued)

Symbol	Parameter	74F			54F		74F		Units
		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Mil} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Com} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		
		Min	Typ	Max	Min	Max	Min	Max	
$\mathrm{t}_{\text {PLH }}$	Propagation Delay	4.0	5.0	6.5	3.5	8.5	4.0	7.5	
$\mathrm{t}_{\text {PHL }}$	$C P$ to Q_{n} or \bar{Q}_{n}	4.0	6.5	8.5	4.0	10.5	4.0	9.5	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay $\overline{M R}$ to Q_{n}	4.5	9.0	11.5	4.5	15.0	4.5	13.0	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay $\overline{\mathrm{MR}}$ to $\overline{\mathrm{Q}}_{\mathrm{n}}$	4.0	6.5	8.0	4.0	10.0	4.0	9.0	ns

AC Operating Requirements

Symbol	Parameter			54F		74F		Units
		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \end{gathered}$		$\mathrm{T}_{\mathrm{A}}, \mathrm{V}_{\mathrm{cc}}=\mathrm{Mil}$		$\mathrm{T}_{\mathrm{A}}, \mathrm{V}_{\mathrm{cc}}=$ Com		
		Min	Max	Min	Max	Min	Max	
$\mathrm{t}_{\mathrm{s}}(\mathrm{H})$	Setup Time, HIGH or LOW	3.0		3.0		3.0		ns
$\mathrm{t}_{s}(\mathrm{~L})$	D_{n} to CP	3.0		3.0		3.0		
$\mathrm{t}_{\mathrm{h}}(\mathrm{H})$	Hold Time, HIGH or LOW	1.0		1.0		1.0		
$t_{\text {c }}(\mathrm{L})$	D_{n} to CP	1.0		2.0		1.0		
$\mathrm{t}_{\mathrm{w}}(\mathrm{H})$	CP Pulse Width	4.0		4.0		4.0		ns
$t_{w}(\mathrm{~L})$	HIGH or LOW	5.0		5.0		5.0		
$\mathrm{t}_{\mathrm{w}}(\mathrm{L})$	$\overline{\overline{M R}}$ Pulse Width, LOW	5.0		5.0		5.0		ns
$\mathrm{t}_{\text {rec }}$	Recovery Time, $\overline{\mathrm{MR}}$ to CP	5.0		5.0		5.0		ns

Ordering Information

The device number is used to form part of a simplified purchasing code where the package type and temperature range are defined as follows:
 P = Plastic DIP
D = Ceramic DIP
F = Flatpak
L = Leadless Chip Carrier (LCC)
S = Small Outline SOIC JEDEC
SJ = Small Outline SOIC EIAJ
DS009490-6

Physical Dimensions inches (millimeters) unless otherwise noted

20-Terminal Ceramic Leadless Chip Carrier (L)
Package Number E20A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

16-Lead (0.150" Wide) Molded Small Outline Package, JEDEC (S)

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

| Fairchild Semiconductor | Fairchild Semiconductor | | Fairchild Semiconductor |
| :--- | :--- | :--- | :--- |\quad| National Semiconductor |
| :--- |
| Corporation |

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

